Potential Anticancer Agents-XLI.* The Relationship of Chemical Structure to Antitumour Activity in Analogues of meso-1,4-Diacetoxy-mercuri-2,3-dimethoxybutane (NSC-2201)

Leon Goodman, Leonard O. Ross, Mary O. Greene, Joseph Greenberg and B. R. Baker, Department of Biological Sciences, Stanford Research Institute, Menlo Park, California

Introduction

Among the active compounds discovered by the Cancer Chemotherapy National Service Center in its search for anticancer agents was meso-1,4-diacetoxymercuri-2,3-dimethoxybutane (NSC-2201). $\dagger \ddagger$ This compound showed a variable and borderline activity against Adenocarcinoma 755. We have undertaken a study of the relationship of chemical structure to antitumour activity using analogues of NSC-2201.

The problem was approached by the 'phase-method', ${ }^{3}$ so that the maximum amount of information could be obtained with a minimum number of compounds, and changes which led to equal or better activity than NSC-2201 could then be followed up in more detail.

For Phase I evaluation, five classes of compounds were synthesized and evaluated.

[^0]Class 1. Replacement of the acetate by other ions

$\begin{gathered} \text { NSC } \\ \text { no. } \end{gathered}$	R	Chemotherapeutic ${ }^{a}$ index
2201	Ac	1
20829	Cl	1
20831	Br	1-2
20830	I	1
22681	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$	2
23110	$n \cdot \mathrm{C}_{7} \mathrm{H}_{15} \mathrm{COO}^{-}$	4
22682	$n \cdot \mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COO}^{-}$	$2 \cdot 5$
30911	.SCN	inactive

${ }^{a}$ The chemotherapeutic index was defined as the ratio of the maximum tolerated dose ($\geqslant 7$ survivors and $<2 \mathrm{~g}$ per mouse weight loss) to the minimum dose that gave $T / C<0.5$; these indices are necessarily approximations at this point.

Class 2. Variations in the alkoxy group

$$
\mathrm{R}^{\prime} \mathrm{HgCH}_{2} \mathrm{CH}(\mathrm{OR})-\mathrm{CHOR}-\mathrm{CH}_{2} \mathrm{HgR}^{\prime}
$$

NSC no.	R	R^{\prime}	Chemotherapeutic index
21289	H	AcO^{-}	$1-2$ (variable)
21296	$\mathrm{Me}(\pm)$	AcO^{-}	inactive
19952	$\mathrm{Et}($ meso $)$	AcO^{-}	inactive
23605	$\mathrm{Et}(\pm)$	AcO^{-}	inactive
22680	$i \cdot \mathrm{Pr}$	Cl	2 (variable)

Class 3. Increase or branching of chain between mercury atoms

$\begin{gathered} \text { NSC } \\ \text { no. } \end{gathered}$	R R'	Chemotherapeutic index
23103	$\mathrm{H} \quad \mathrm{Cl}$	$1 \cdot 5$
20832	$\mathrm{Me} \quad \mathrm{Cl}$ (one isomer)	$2 \cdot 5$
21292	$\mathrm{Et} \quad \mathrm{Cl}$ (erythro?)	inactive
21298	Et AcO^{-}(erythro ?)	inactive
21297		inactive
22690		inactive

Class 4. Ring compounds to give fixed conformational relationship between mercury atoms

$\begin{gathered} \text { NSC } \\ \text { no. } \end{gathered}$	Isomer	R	X	Chemotherapeutic index
21935	2,3	NO_{3}	0	2
21934	2,3	I	0	2
23106	2,5	$\left.\begin{array}{l} \mathrm{NO}_{3} \\ \mathrm{OH} \end{array}\right\}$	0	1
23105	2,5	I	0	8
21286	2,6	Cl	O	5
21287	2,6	I	0	2
22678	2,6	I	N	1
23108	2,6	AcO	S	2
23109	ClHgCH_{2} (mi			inactive

Class 5. Monomercurials-all of these were inactive, but more toxic than dimercurials.

$\begin{gathered} \text { NSC } \\ \text { no. } \end{gathered}$	Compound
23601	
23104	
23604	
23102	
23603	
$\begin{aligned} & 23602 \\ & 23107 \end{aligned}$	

Thus, the first phase, consisting of 35 compounds, led to the following conclusions for phase II synthesis.

Class 1. Replacement of the acetate ion in NSC-2201 by other inorganic ions gave no improvement, but replacement by higher organic acids led to an increased chemotherapeutic index, the best compound being the dioctanoate, NSC-23110. The next best compounds were the stearate and benzoate.

Class 2. Alkoxy variations, keeping the acetate group constant, gave poor to no activity. However, (2,3-di-isopropoxytetramethylene)bis[mercury chloride] (NSC-22680) was an exception.

Class 3. Lengthening of the chain gave inactive compounds. Chain branching appeared to give decreased activity, although again a dichloromercuri compound (NSC-20832) was an exception.

Class 4. As a class, compounds built from a dioxan nucleus gave better chemotherapeutic indices than the corresponding salts of NSC-2201. However, a thioxane or morpholine ring gave no better activity than NSC-2201.

Class 5. All of the monomercurials were much more toxic than the corresponding salts of NSC-2201 and were also inactive.

Based on these attempted correlations, a second phase of synthesis of 13 compounds was initiated.

Class 2. Alkoxy variations. Further analogues were synthesized based on the increased chemotherapeutic index of NSC-22680 and the apparent increased chemotherapeutic index of '2201dibenzoate' (NSC-22681).

NSC no.	\mathbf{R}	R^{\prime}	Chemotherapeutic index
29442	H	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$	$\mathbf{1}$
30910	$n \cdot \mathrm{C}_{3} \mathrm{H}_{9}$.	$\mathbf{C l}$	$\mathbf{1 . 5}$
30912	$n \cdot \mathrm{C}_{3} \mathrm{H}_{7}$.	AcO^{-}	$1 \cdot 5$
30918	$n \cdot \mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$	inactive
30913	$n \cdot \mathrm{C}_{4} \mathrm{H}_{9}$.	Cl	$\mathbf{1}$
30914	$n \cdot \mathrm{C}_{4} \mathrm{H}_{9}$.	AcO^{-}	inactive
$\mathbf{3 0 9 1 9}$	$n \cdot \mathrm{C}_{4} \mathrm{H}_{9}$.	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$	$\mathbf{1 . 5}$

Class 3. Branched chain. Two dibenzoates of this series were prepared to see if the chemotherapeutic index could be increased.

NSC no.	R	Chemotherapeutic index
30917	Me	inactive
31961	H	1

Class 4. Ring compounds. Three benzoate salts were prepared, as well as one dinitrate. The latter became available as an intermediate to the corresponding benzoate.

	Isomer	R	Chemotherapeutic index
NSC no.			8
29443	2,3	BzO	8
30915	2,6	BzO	2
30909	2,5	NO	2
30916	2,5	BzO	$7 \cdot 5$

In Phase II, the activity of NSC-22680 in Class 2 was investigated. The di- n-propoxy derivative (NSC-30910) had a chemotherapeutic index similar to that of the di-isopropoxy derivative (NSC-22680); the former was easier to synthesize. Higher or lower alkoxy groups gave decreased effectiveness. Variation of the anion of NSC-30910 from chloro to benzoate or acetate did not improve the index.

Two major conclusions can be drawn from the first two phases of work: first, the 2,5-dioxan nucleus, as represented by NSC- 30916 (Class 4), probably represents the best carrier group; secondly, the change in anion can make a change in chemo-therapeutic index.

Phase III was initiated to vary the anion of the 2,5 -dioxan carrier further; however, these five compounds were less effective than previously evaluated members of this class.

Class 4. Ring compounds

$\begin{gathered} \text { NSC } \\ \text { no. } \end{gathered}$	R	Chemotherapeutic index
38186	$n \cdot \mathrm{C}_{7} \mathrm{H}_{15} \mathrm{COO}^{-}$	1
38187	Cl	4
40581	(COO^{-}	inactive
41442	$p \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COO}^{-}$	2
41443	β-naphthoate	inactive

Chemistry

The parent compound, meso-l,4-diacetoxymercuri-2,3-dimethoxybutane (I), was prepared according to the procedure described by Johnson, Jobling, and Bodamer, ${ }^{1}$ which utilizes the reaction of butadiene with a methanolic suspension of mercuric acetate. A 61 per cent yield of the less soluble (I), designated

Table I. (Class 1). Variation of anion in meso. $\mathrm{RHgCH}_{2} \mathrm{CH}-\mathrm{CHCH}_{2} \mathrm{HgR}$

Com. pound no.	$\begin{gathered} \text { NSC } \\ \text { no. } \end{gathered}$	R^{a}	$\begin{gathered} \% \\ \text { Yield } \end{gathered}$	Pro. cedure	m.p., ${ }^{\circ} \mathrm{C}$	Analysis			
						Calcd.		Found	
						C	H	C	H
I	2201	AcO	61^{c}	A	153-154 ${ }^{\text {d }}$	$18 \cdot 9$	$2 \cdot 83^{e}$	$19 \cdot 1$	2.97
XI	20829	Cl	81^{c}	B^{j}	165-167	$12 \cdot 3$	$2 \cdot 04$	$12 \cdot 4$	$2 \cdot 05$
XII	20831	Br	62^{\prime}	B ${ }^{\text {i }}$	167-169	$10 \cdot 6$	$1 \cdot 77$	$10 \cdot 7$	$1 \cdot 82$
XIII	20830	I	93^{3}	B ${ }^{\prime}$	188-190	$52 \cdot 0^{h}$		$52 \cdot 0^{h}$	
XIV	22681	BzO	77^{i}	B^{\prime}	185-187	$31 \cdot 6$	$2 \cdot 90$	31.9	$2 \cdot 90$
XV	22682	SrO	53^{c}	B	104-105	$46 \cdot 5$	$7 \cdot 62$	$46 \cdot 2$	$7 \cdot 57$
XVI	23110	Oc 0	76^{c}	B	91-93	$32 \cdot 8$	$5 \cdot 26$	$32 \cdot 6$	5•16
XVII	30911	SCN	81	B^{\prime}	145-147	$15 \cdot 1$	1.98	$15 \cdot 2$	1.92

a $\mathrm{AcO}=$ acetoxy, $\mathrm{BzO}=$ benzoyloxy, $\mathrm{SrO}=$ stearoxy, $\mathrm{OcO}=n$-octanoyloxy. b Yield of purified material. eRecrystallized from 95% ethanol. d Lit. ${ }^{1}$ m.p. $148-149^{\circ}$. e Anal. Calcd.: $\mathrm{Hg}, 63 \cdot 1$. Found: Hg, $63 \cdot 4$. f Recrystallized from acetone. g Recrystallized from ethyl acetate. h Mercury analysis performed by the method of Walton and Smith ${ }^{14}$ which gave satisfactory results for acetoxy and iodo derivatives, but low results for chloro and bromo derivatives.
Recrystallized from benzene-methanol. i Sodiun salt of anion added as aqueous solution.
as the meso-isomer by analogy with the corresponding ethoxy compound, ${ }^{1}$ was isolated and was accompanied by a 13 per cent yield of the more soluble (\pm)-isomer (II) which had not previously been isolated in pure form. The meso-(III) and (\pm)-(IV) forms of (2,3-diethoxytetramethylene)bis[mercury acetate] were prepared as described by Johnson et al. ${ }^{1}$ in 48 per cent and 6 per cent yields, respectively (Table II). The compounds had previously been assigned steric configurations on the basis of dipole moment measurements of the 2,3 -diethoxy-1,4-diiodobutane isomers derived from the two acetoxymercuri isomers. The diiodide from (III) had the lower dipole moment, as would be expected

Table II (Class 2). Variations in the alkoxy group

$$
\mathrm{R}^{\prime} \mathrm{HgCH}_{2} \mathrm{CH}(\mathrm{OR})-\mathrm{CH}(\mathrm{OR})-\mathrm{CH}_{2} \mathrm{HgR}^{\prime}
$$

Compound no.	$\begin{aligned} & \text { NSC } \\ & \text { no. } \end{aligned}$	$\mathrm{R}^{\prime \pi}$	$\mathrm{R}^{\boldsymbol{a}}$	$\begin{gathered} \% \\ \text { Yield }{ }^{b} \end{gathered}$	Procedure	mı.p., ${ }^{\circ} \mathrm{C}$	Analysis			
							Caled.		Found	
							C	H	C	H
II	21296	AcO	Me ${ }^{\text {c }}$	$13^{\text {d }}$	A	102-104	$18 \cdot 9$	$2 \cdot 83$	$18 \cdot 6$	$2 \cdot 74$
III	19952	AcO	Et ${ }^{\text {e }}$	48^{\prime}	A	162-163	$60 \cdot 5^{h}$		$60 \cdot 4^{h}$	
IV	23605	AcO	Et ${ }^{\text {c }}$	6^{i}	A	110-111 ${ }^{\text {j }}$	$60 \cdot 5^{h}$		$60 \cdot 3^{h}$	
V	21289	AcO	$\mathrm{H}^{\text {e }}$	27^{i}	A	220-240(d.)	$15 \cdot 8$	2-32	$15 \cdot 8$	$2 \cdot 25^{k}$
VI		AcO	$\mathbf{H}^{\boldsymbol{e}}$	4^{i}	A	190-260(d.)	$15 \cdot 8$	2-32	$15 \cdot 8$	$2 \cdot 29^{l}$
VII	30912	AcO	$n \cdot \mathrm{Pr}^{e}$	$23^{\text {m }}$	A	125-126	24-3	3.79	24-3	3-89
VIII	30914	Ac O	$n \cdot \mathrm{Bu}^{e}$	$7^{\text {i }}$	A	115-117	$26 \cdot 6$	4-19	$26 \cdot 7$	4-30
IX	22680	Cl	$i-\mathrm{Pr}$	8^{\prime}	J	144-146	$18 \cdot 6$	$2 \cdot 80$	$18 \cdot 7$	3-30
X		Cl	X^{n}	8^{f}	J	123-126	$16 \cdot 8$	$2 \cdot 50$	$17 \cdot 1$	$2 \cdot 73$
XVIII	30910	Cl	$n \cdot \mathrm{Pr}^{\text {c }}$	70^{m}	$\mathrm{B}^{\text {o }}$	135-136	$18 \cdot 6$	$3 \cdot 11$	$18 \cdot 7$	$3 \cdot 15$
XIX	30913	Cl	$n \cdot \mathrm{Bu}^{e}$	65^{m}	$\mathrm{B}^{\text {o }}$	109-110	21-4	$3 \cdot 59$	21-3	$3 \cdot 40$
XX	30918	BzO	$n-\mathrm{Pr}^{e}$	17^{m}	B°	138-140	$35 \cdot 3$	$3 \cdot 70$	$35 \cdot 4$	$3 \cdot 90$
XXI	30919	BzO	$n \cdot \mathrm{Bu}^{e}$	60^{m}	$\mathrm{B}^{\text {o }}$	135-136	$37 \cdot 0$	$4 \cdot 12$	$36 \cdot 9$	$4 \cdot 12$
XXII	29442	BzO	\mathbf{H}^{e}	83^{f}	B°	270-280(d.)	$29 \cdot 5$	$2 \cdot 48$	$29 \cdot 7$	2.75

$\boldsymbol{a} \mathrm{AcO}=$ acetoxy, $\mathrm{BzO}=$ benzoyloxy, $\operatorname{Pr}=$ propyl, Bu=butyl. ${ }^{b}$ Yicld of purificd matcrial. ${ }^{c}(\pm)$-isomer. ${ }^{a}$ Recrystallized from ethyl acetate. e meso-Isomer. f Recrystallized from 05% ethanol. g Lit. ${ }^{1}$ m.p. 162-163 ${ }^{\circ}$. h Mercury analysis; see footnote ${ }^{h}$ in Table I. ${ }^{i}$ Recrystallized from water ${ }^{j}$ Lit. ${ }^{1}$ m.p. 111-112 ${ }^{\circ}$. ${ }^{k}$ Anal. Calcd.: Hg, 66•1. Found: Hg, 64•8. ${ }^{\boldsymbol{l}}$ Anal. Calcd.: Hg, 66•1. Found: Hg, 65•7. m Recrystallized from methanol. ${ }^{n}$ One $\mathbf{R}=\boldsymbol{i} \cdot \mathrm{PrO}$ and the other $\mathbf{R}=\mathbf{A c O}$; contained ester $\mathbf{C}=\mathbf{O}$ absorption in the infrared. ${ }^{\circ}$ Sodium salt of anion added as aqueous solution.
for the meso-isomer. The reaction of butadiene with aqueous mercuric acetate gave two crystalline isomers of (2,3 -dihydroxytetramethylene)bis[mercury acetate], the less soluble of which was tentatively assigned the meso-(V) structure and the more soluble the (\pm)-(VI) form by analogy with (III) and (IV). The reaction of butadiene with solutions of mercuric acetate in n propyl alcohol and n-butyl alcohol gave low yields of sharply melting n-propoxy (VII) and n-butoxy (VIII), analogues of (I) which are presumed to be meso forms. Only very low yields of a diisopropoxy compound (IX) could be isolated from the reaction of butadiene with a solution of mercuric acetate in isopropyl alcohol which was then treated with potassium chloride. Infrared examination of the crude product showed considerable amounts of covalent O-acetate and, on one occasion, a product was obtained whose infrared spectrum and analysis indicated it to be compound (X). Obviously, acetic acid formed in the reaction competed well with isopropyl alcohol in the addition to the double bonds; bulky alkoxy groups give poor results in the reaction. Some-

(X)
what better yields of (IX) resulted when mercuric nitrate dissolved in isopropyl alcohol was added to butadiene in the first stage of the reaction. Changes in the anion attached to mercury were readily available by treating the acetoxymercuri compound with aqueous solutions of a suitable anion. Thus, from the meso compound (I) were prepared the chloro- (XI), bromo- (XII), iodo- (XIII), benzoyloxy- (XIV), stearoyloxy- (XV), octanoyloxy(XVI), and thiocyano- (XVII) mercuri analogues of (I) (Table I). Similarly, from (VII) and (VIII) were prepared the chloromercuri and benzoyloxymercuri derivatives (XVIII, XIX, XX, and XXI) and from (V), the benzoyloxymercuri derivative (XXII) (Table II).

The use of isoprene rather than butadiene in the reactions of mercuric acetate in alcohols and water led to a series of compounds of Class 3 (Table III). The reaction in ethanol gave a low yield of compound (XXIII) as a sharply melting solid, presumed to be
the erythro diastereoisomer by analogy with the butadiene reaction. The acetoxymercuri compound (XXIII) was converted to the chloromercuri derivative (XXIV). From the reaction of isoprene, mercuric acetate and methanol, an acetoxymercuri compound could not be obtained as a crystalline solid but the crude product was converted to the crystalline chloromercuri (XXV) and benzoyloxymercuri (XXVI) compounds. Similarly, from the reaction of isoprene, mercuric acetate and water, the final isolated solids were the chloromercuri (XXVII) and benzoyloxymercuri (XXVIII) derivatives.

In order to vary the distance between the mercury atoms of (I), l,5-hexadiene was allowed to react with a methanolic solution of mercuric acetate to give a good yield of a sharply melting, and presumably single, isomer of (2,5-dimethoxyhexamethylene)bis[mercury acetate] (XXIX) (Table III).

The reaction of aqueous mercuric acetate with diallyl ether, ${ }^{4,5}$ diallylamine, ${ }^{4}$ and diallyl sulphide led to a variety of dimercurated cyclic compounds. The reaction with diallyl ether gave a syrup which was converted to the solid 2,6 -bis[(chloromercuri)methyl]-p-dioxan (XXX) and the analogous iodomercurial (XXXI) (Table IV). Both of these products appeared to be mixtures of cis- and trans-isomers and recrystallization gave what appeared to be homogeneous products. By further transformations of crude (XXX), Summerbell and Stephens ${ }^{5}$ have shown the product to be a mixture of cis- and trans-isomers. When aqueous mercuric nitrate was allowed to react with diallyl ether and the resulting solution treated with sodium benzoate, a high yield of a sharpmelting, crystalline compound, probably a single isomer of the dibenzoyloxy compound (XXII), was obtained. The reaction between diallylamine, mercuric acetate and water gave a syrup which was converted to the difficultly purifiable 2,6 -bis[(iodo-mercuri)methyl]-morpholine (XXXIII), probably a mixture of cis- and trans-isomers. The analogous chloromercuri compound has been described by Nesmeyanov and Lutsenko. ${ }^{4}$ The reaction of diallyl sulphide, mercuric acetate and water gave a low yield of 2,6 -bis[(acetoxymercuri)methyl]- p-thioxane (XXXIV) whose sharp melting point suggested that it was a single isomer.

The cyclizations leading to compounds (XXX)-(XXXIV) are representative of a large number of such reactions which accom-
'Table III (Class 3). Increase or branching of chain between mercury atoms
 ethanol-water. \boldsymbol{a} Prepared from 1,5-hexadiene. i Sce Experimental.

Table IV (Class 4). Ring compounds

[^1]pany mercuration; a number of examples of these are also described in a recent article by Henbest and Nicholls. ${ }^{6}$ The strong electrophilicity of mercuric compounds undoubtedly initiates such reactions, whose mechanism is generalized below.

A number of dimercurials based on 2,5-p-dioxan (Table IV) were prepared by the reaction of allyl alcohol with aqueous mercuric nitrate solution, a reaction first reported by Hofmann and Sand. ${ }^{7}$ Summerbell and Stephens ${ }^{8}$ later showed that the direct product of this reaction, 2,5 -bis[(nitratomercuri)methyl]-p-dioxan (XXXV), was exclusively the trans-isomer. Recrystallization of (XXXV) from water gave a compound whose analytical data and infrared spectrum indicated it to be the nitrato-hydroxy compound (XXXVI). Conventional treatment of (XXXV) led to the bis-(iodomercuri)methyl- (XXXVII), bis-(benzoyloxymercuri)-methyl- (XXXVIII), bis-(chloromercuri)methyl- (XXXIX), bis-(octanoyloxymercuri)methyl- (XL), bis-(naphthoyloxymercuri)-methyl- (LII), bis-(p-toluyloxymercuri)methyl- (LIV), and bis-(nicotinoyloxymercuri)methyl- (LV) p-dioxans. It is interesting that 2,5-bis-(acetoxymercurimethyl)- and 2,5-bis[(hydroxy-mercuri)methyl]-p-dioxan have both been used to link together two molecules of serum mercaptoalbumin. ${ }^{15,16}$

The third series of dimercurated p-dioxans was prepared by the reaction of butadiene, ethylene glycol, and aqueous mercuric nitrate solution, as described recently by Summerbell and Lestina, ${ }^{9}$ who showed that the product was a mixture of cis- and trans-isomers of 2,3-bis[(nitratomercuri)methyl]-p-dioxan (XLI). The iodo (XLII) and benzoyloxy (XLIII) analogues of (XLI) were also prepared (Table IV).

Two additional dimercurials were prepared by the addition of methanolic mercuric acetate to diallyl ether, giving a compound isolated as 1,7-diiodomercuri-2,6-dimethoxy-4-oxaheptane (XLIV), and by the addition of methanolic mercuric acetate to 4 -vinylcyclohexene-l to give, finally, the dichloromercuri compound (XLV), probably as a mixture of isomers.

A group of monomercurated compounds (Table V) was also prepared as part of the testing programme. The reaction of aqueous mercuric acetate and o-allylphenol, as described by Adams, Roman and Sperry, ${ }^{10}$ gave mercurated dihydrobenzofurans (XLVI and XLVII). The addition of methanolic mercuric acetate to acrylic acid gave a solid whose infrared spectrum showed strong carboxylate ion absorption at $6 \cdot 40 \mu$ and $7 \cdot 25 \mu$ and which is written as the zwitterion, β-methoxy- α-mercuripropionate (XLVIII). The addition of methanolic mercuric acetate to ethyl acrylate gave a syrup which analyzed correctly for ethyl α-acetoxy-mercuri- β-methoxypropionate (XLIX). ${ }^{11}$ The reaction of aqueous mercuric acetate with butene-1 and butene-2, followed by treatment with potassium chloride or potassium bromide, gave compounds (L)-(LII). (2-Methoxybutyl)mercury bromide (L) was a syrup, probably an isomeric mixture, while the related compound (LI) was isolated as a sharply-melting, pure isomer. Compound (LII) had previously been described by Thomas and Wetmore. ${ }^{12}$

Infrared Spectra. Infrared spectra showed that the acetoxymercuri compounds were ionic in the solid state and exhibited acetate-ion bands at $6 \cdot 25-6 \cdot 35 \mu$ and $7 \cdot 10-7 \cdot 25 \mu$. These bands disappeared when the acetate was converted to a halomercuri compound. These same carboxylate-ion bands were present in the monomercuri compounds (XLVIII and XLVIX), with the ester (XLIX) also showing its characteristic ester carbonyl at $5 \cdot 85 \mu$. The benzoxymercuri compounds (e.g., XIV) were also clearly ionic, showing carboxylate ion absorptions at 6.25-6.45 μ and $7 \cdot 35-7 \cdot 55 \mu$. The stearoyloxymercuri compound (XV) had a strong carboxylate-ion band at $6 \cdot 05 \mu$ and the octanoyloxymercuri derivative (XIV) a similar band at $6 \cdot 10 \mu$, as well as the band near $7 \cdot 30 \mu$. The thiocyanomercuri derivative (XVII) had its thiocyanate absorption at 4.72μ, which is more suggestive of covalent thiocyanate than ionic thiocyanate; the latter generally absorbs in the $4 \cdot 79-4 \cdot 95 \mu$ region. The nitratomercuri
'Table V (Class 5). Monomercury compounds

Compound no.	$\begin{gathered} \text { NSC } \\ \text { no. } \end{gathered}$	Formula	$\begin{gathered} \% \\ \text { Yield }{ }^{(} \end{gathered}$	Procedure	m.p. ${ }^{\circ} \mathrm{C}$	Analysis			
						Calcd.		Found	
						C	H	C	H
XLVI	23602		3^{g}		$79-80^{6}$				
XLVII	23107		11^{k}		104-106 ${ }^{\text {e }}$				
XLVIII	23102		77^{\prime}	H	149-154 ${ }^{\text {d }}$	$15 \cdot 9$	2-02	$15 \cdot 8$	1.99
XLIX	23603	$\mathrm{MeOCH}_{2} \mathrm{CH}(\mathrm{HgOAc}) \mathrm{COOEt}$	45	H	syrup	24-3	3•61	24-3	3.61
L	23604	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OMe}) \mathrm{CH}_{2} \mathrm{Hg} 3 \mathrm{Br}$	48	J	syrup	$16 \cdot 2$	$2 \cdot 92$	$16 \cdot 3$	$3 \cdot 01$
LI	23601	$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OMe}) \mathrm{CH}(\mathrm{HgBr}) \mathrm{CH}_{3}$	26	J^{i}	37-38	$16 \cdot 1$	$2 \cdot 95$	$16 \cdot 3$	$3 \cdot 01$
LiI	23104	$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OMe}) \mathrm{CH}(\mathrm{HgCl}) \mathrm{CH}_{3}$	54	$\mathrm{J}^{\boldsymbol{h}}$	$65-66^{e}$				

compounds (XXXV and XLI) showed strong bands at 6.63$6 \cdot 70 \mu$ and $7 \cdot 80-7 \cdot 85 \mu$ which are characteristic of ionic nitrate. The $\mathrm{C}-\mathrm{O}-\mathrm{C}$ bands of the cyclic and acyclic ethers appeared in the range of $9 \cdot 00-9 \cdot 80 \mu$.

The meso- and (\pm)-pairs such as (I)-(II) and (III)-(IV) showed characteristic infrared spectral differences that served to distinguish the isomers.

The characterization and analytical data for all the compounds are found in Tables $I-V$.

Experimental*

A few illustrative procedures are reported in detail below and these serve as examples of the methods used to prepare the compounds listed in Tables I-V.
(2,5-Dimethoxyhexamethylene)bis[mercury acetate] (XXIX). Procedure A. To a stirred suspension of mercuric acetate $(20.0 \mathrm{~g}$, $62.6 \mathrm{mmoles})$ in reagent methanol (60 ml), 1,5 -hexadiene (2.70 g , 32.8 mmoles) was added dropwise; a clear solution resulted. The solution was chilled to 15° and $11.0 \mathrm{~g}(52.8$ per cent) of crystalline solid separated. This was recrystallized from acetone $(\mathrm{lg} / 15 \mathrm{ml})$ to yield $8 \cdot 8 \mathrm{~g}(42 \cdot 3$ per cent) of product, m.p. 128 $130^{\circ} ; \lambda_{\max (\mu)}^{\mathrm{Nujol}} 6 \cdot 08,6 \cdot 19$ and $6 \cdot 28\left(\mathrm{CO}_{2}^{-}\right) ; 9 \cdot 22(\mathrm{C}-\mathrm{O}-\mathrm{C})$. Analytical data are listed in Table I.

The ether groups were varied in procedure A by use of the appropriate alcohol in place of methanol.
meso-(2,3-Dimethoxytetramethylene)bis[mercury stearate] $(X V)$. Procedure B. A solution of sodium stearate was prepared by adding a solution of sodium hydroxide ($1.04 \mathrm{~g}, 26.0 \mathrm{mmoles}$) in water $(50 \mathrm{ml})$ to a hot $\left(60-70^{\circ}\right)$, stirred solution of stearic acid $(7 \cdot 44 \mathrm{~g}, 26 \cdot 0 \mathrm{mmoles})$ in 95 per cent ethanol $(300 \mathrm{ml})$. The hot $\left(60-70^{\circ}\right)$ solution of sodium stearate was added to a vigorously stirred solution of meso-1,5-diacetoxymercuri-2,3-dimethoxybutane (I) ($4.44 \mathrm{~g}, 7.00 \mathrm{mmoles}$) in water $(300 \mathrm{ml})$. The solid product was separated and washed well with water. It was recrystallized from 300 ml of 95 per cent ethanol to yield 4.2 g

[^2](53 per cent) of a crystalline product, m.p. 104.5-105 ${ }^{\circ} ; \lambda_{\max (\mu)}^{\text {Nujot }}$ $6 \cdot 05$ and $7 \cdot 22\left(\mathrm{CO}_{2}^{-}\right), 7 \cdot 68,7 \cdot 91,8 \cdot 05,8 \cdot 18,8 \cdot 30$, and $8 \cdot 41$ (typical fatty acid bands), $9 \cdot 22$ and $9 \cdot 76$ (C-O—C). Analytical data are listed in Table I.

2,6-Bis[(benzoyloxymercuri)methyl]-p-dioxan (XXXII). Procedure C. Diallyl ether ($2 \cdot 0 \mathrm{~g}, 20.4 \mathrm{mmoles}$) was added dropwise to a stirred solution of mercuric nitrate ($5.0 \mathrm{~g}, 15 \mathrm{mmoles}$) in water (150 ml). After a few minutes the solution became yellow and to it was added a solution of sodium benzoate ($3 \cdot 24 \mathrm{~g}, 22 \cdot 5$ mmoles) in water (30 ml). The product, $5 \cdot 0 \mathrm{~g}$ (88 per cent), m.p. $169-171^{\circ}$, separated and was recrystallized from methanol $(40 \mathrm{ml})$ with the aid of Norite; yield, $4 \cdot 0 \mathrm{~g}$ (70 per cent), m.p. 174-175 ${ }^{\circ}$; $\lambda_{\text {max }(\mu)}^{\text {Nujul }} 6 \cdot 25-6 \cdot 35\left(\mathrm{CO}_{2}^{-}\right.$and aryl $\left.\mathrm{C}-\mathrm{H}\right), 7 \cdot 45\left(\mathrm{CO}_{2}^{-}\right)$, $9 \cdot 13(\mathrm{C}-\mathrm{O}-\mathrm{C}), 13.95$ (monosubstituted phenyl). Analytical data are listed in Table II.

The use of sodium chloride or iodide in place of sodium benzoate gave (XXX) and (XXXI) respectively.

2,5-Bis $[$ (nitratomercuri)methyl $]$-p-dioxan ($X X X V$). Procedure D. A solution of mercuric oxide ($11 \cdot 75 \mathrm{~g}, 54 \cdot 0 \mathrm{mmoles}$), concentrated nitric acid $(7.5 \mathrm{ml})$ and water (20 ml) was cooled to 0° and allyl alcohol ($30 \mathrm{ml}, 0.44 \mathrm{~mole}$) was added dropwise, with stirring. After a few minutes, a product precipitated and was filtered and washed thoroughly with acetone; yield, 12.5 g (72 per cent), m.p. $185-188^{\circ}$ (d.) ; $\lambda_{\max (\mu)}^{\text {Nupl }} 6 \cdot 63$ and $7 \cdot 81\left(\mathrm{NO}_{3}^{-}\right)$, 9.31 (C-O-C). Analytical data are listed in Table II.

2,3-Bis[(nitratomercuri)methyl $]$-p-dioxan (XLI). Procedure E. A solution of mercuric oxide ($24 \cdot 3 \mathrm{~g}, 0 \cdot 112$ mole), concentrated nitric acid (20 ml), and water (15 ml) was prepared. When solution was complete, 10 ml of water and 50 ml of ethylene glycol were added, then the solution was cooled to 20°. With stirring, gaseous butadiene was added until a small aliquot of the mixture failed to give a yellow precipitate when it was added to aqueous sodium hydroxide solution. A total of $12.0 \mathrm{~g}(0.22$ mole) of butadiene was used. The solution was chilled at 15° and 22 g (61 per cent) of crystalline solid precipitated. After being collected on a filter, the solid was washed with three $50-\mathrm{ml}$ portions of 95 per cent ethanol; yield, $20 \cdot 0 \mathrm{~g}$ (56 per cent), m.p. $167-170^{\circ} ; \lambda_{\text {max }}^{\text {Nujol }}\left(6.70\right.$ and $7.85\left(\mathrm{NO}_{3}^{-}\right), 9 \cdot 05(\mathrm{C}-\mathrm{O}-\mathrm{C})$. Analytical data are listed in Table II.

2,6-Bis[(acetoxymercuri)methyl]-p-thioxane (XXXIV). Procedure F. To a cold $\left(10^{\circ}\right)$ and well stirred mixture of diallyl sulphide ($5 \cdot 0 \mathrm{~g}, 44 \mathrm{mmoles}$) and water (100 ml) a solution of mercuric acetate ($28.0 \mathrm{~g}, 88 \mathrm{mmoles}$) in water (100 ml) was added dropwise. The mixture was stirred for a total of about one hour during which time $9 \cdot 3 \mathrm{~g}$ (25 per cent) of solid precipitated. This was recrystallized from 200 ml of acetone; yield, $2 \cdot 0 \mathrm{~g}$ (6 per cent) m.p. $191-193^{\circ}($ d. $) ; \lambda_{\max (\mu)}^{\mathrm{Nujol}} 6 \cdot 31$ and $7 \cdot 20\left(\mathrm{CO}_{2}^{-}\right), 9 \cdot 40$ and $9 \cdot 55$ (C-O-C). Analytical data are listed in Table II.

When 40 g of diallyl sulphide was employed in the procedure as described above, 84 g (37 per cent) of (XXXIV) was obtained as the solid precipitate. The infrared spectrum of this material was identical with that of the analytically pure product.
β-Methoxy- α-mercuripropionate (XLVI). Procedure H. To a stirred solution of mercuric acetate ($30.0 \mathrm{~g}, 62.0 \mathrm{mmoles}$) in methanol (200 ml), a solution of glacial acrylic acid ($4 \cdot 46 \mathrm{~g}, 62 \cdot 0$ mmoles) in methanol (50 ml) was added dropwise, stirring well. The solution was chilled at 15° and 15.0 g (77 per cent) of product precipitated. The product was washed with three $50-\mathrm{ml}$ portions of methanol and melted at 149-154 with resolidification followed by decomposition near 220°. In the infrared it had $\lambda_{\max (\mu)}^{\text {Nujol }} 6 \cdot 40$ and $7 \cdot 25\left(\mathrm{CO}_{2}^{-}\right), 9 \cdot 25(\mathrm{C}-\mathrm{O}-\mathrm{C})$. Analytical data are listed in Table III.

1,7-Diiodomercuri-2,6-dimethoxy-4-oxaheptane (XLIV). Diallyl ether ($2 \cdot 64 \mathrm{~g}, 27 \mathrm{mmoles}$) was added dropwise to a stirred suspension of mercuric acetate ($17 \cdot 2 \mathrm{~g}, 54$ mmoles) in absolute methanol $(150 \mathrm{ml})$. The resulting solution gave no precipitate when tested with aqueous sodium hydroxide solution. The methanol was evaporated in vacuo at room temperature, and 350 ml of water was added to the residue. To the resulting solution was added with stirring a solution of potassium iodide ($8 \cdot 30 \mathrm{~g}$, 50 mmoles) in water (100 ml). A semi-solid material precipitated and was isolated by decanting the aqueous solution and washing the residue with water. The precipitate was taken up in 50 ml of acetone, the acetone was evaporated in vacuo and the residue dried over phosphorus pentoxide leaving 8.0 g (42 per cent) of product; $\lambda_{\max (\mu)}^{\text {Nujol }} 9 \cdot 20-9 \cdot 30(\mathrm{C}-\mathrm{O}-\mathrm{C})$. See Table III for analytical data.

1-(Chloromercuri)-4-[2-(chloromercuri) - 1-methoxyethyl $]$-2methoxycyclohexane (XLV). Procedure J. A solution of vinyl-
cyclohexene-1 ($3.21 \mathrm{~g}, 30 \mathrm{mmoles}$) in methanol (50 ml) was added dropwise to a stirred suspension of mercuric acetate ($20 \mathrm{~g}, 62 \mathrm{mmoles}$) in methanol (200 ml). The solution was stirred until an aliquot no longer gave a yellow precipitate with aqueous sodium hydroxide solution. To the solution was added dropwise a solution of potassium chloride ($9.24 \mathrm{~g}, 0.12$ mole) in water $(150 \mathrm{ml})$. The white precipitate, $18 \cdot 5 \mathrm{~g}(86 \mathrm{per}$ cent), was washed thoroughly with cold water. It could not be crystallized from any common solvent. The product had m.p. $140-155^{\circ}$ and $\lambda_{\max (\mu)}^{\text {Nuju }}$ 9.25 (C-O-C).

Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{Hg}_{2} \mathrm{O}_{2}: \mathrm{C}, 18 \cdot 6 ; \mathrm{H}, 2 \cdot 80$. Found: C, $18 \cdot 8 ; \mathrm{H}, 2 \cdot 64$.

The ether groups were varied in Procedure J by use of the appropriate alcohol in place of methanol.

Biological Activity

Methods
The mercurials were tested against Sarcoma 180 in Swiss mice, Leukemia L-1210 and Adenocarcinoma 755 in (C57Bl $\times \mathrm{DBA}$)Fi mice. All tests were done according to the procedures established by the Cancer Chemotherapy National Service Center, National Institutes of Health. ${ }^{17}$ Since none of the compounds had any significant activity against the first two tumours, detailed methods and results will be given only for the Adenocarcinoma.

A series, generally of 293 mice, was implanted in the axillary region with 0.1 ml of a tumour brei suspended in Locke's solution. The mice in any series were all of one sex, and all weighed between 18 and 22 g . The mice were distributed randomly in groups of ten, except for one group of 43 animals which served as a control. Treatment was begun 24 h after tumour implantation and continued once daily for eleven days. Drugs were dissolved or suspended in 0.9 per cent sodium chloride containing 0.5 per cent methylcellulose. Animals were weighed at the end of one week. Twenty-four hours after the last treatment, the mice were weighed and sacrificed, then the tumours excised, weighed and averaged.

Compounds were considered sufficiently active to warrant confirmatory tests if, on initial testing, the average tumour

Table VI-continued

Com. pound no.	$\begin{aligned} & \text { NsC } \\ & \text { no. } \end{aligned}$	\mathbf{R}^{6}	Daily dose $\mathrm{mg} / \mathrm{kg}$	Survi. vors	Weight change, treated/ control	Tumour weight, treated/ control	T / C
XVI	23110	Oc 0	100	0/10			toxie
			75	3/10			toxic
			50	43/50	$-0.7 / 1 \cdot 7$	438/1462	$0 \cdot 30$
			25	16/20	$-1 \cdot 2 / 0 \cdot 65$	429/1613	$0 \cdot 27$
			$12 \cdot 5$	19/20	0.7/0.7	747/1613	$0 \cdot 46$
			$6 \cdot 3$	10/10	1.8/1.2	997/1062	0.94
			$3 \cdot 1$	9/10	1-5/1.2	793/1062	$0 \cdot 75$
XVII	30911	-SCN	100	0/10			toxic
			75	0/10			toxic
			50	49/90	-0.0/2.3	660/1861	toxic
			$37 \cdot 5$	43/60	-0.9/1.8	805/1546	$0 \cdot 52$
			25	$9 / 10$	$-0 \cdot 9 / 0 \cdot 6$	1058/1101	0.96

${ }^{\text {a }} \mathrm{Ac} \cdot \mathrm{O}=$ aretoxy, $\mathrm{BzO}=$ benzoyloxy, $\mathrm{SrO}=$ stearoyloxy, $\mathrm{Oc} \mathrm{O}=n \cdot 0$ etanoyloxy.
the latter exhibited some tumour-reducing activity though not enough to qualify as significantly active. The octanoate and stearate were the most effective of the salts of (I). It is interesting that the octanoate of the more effective dioxan dimercurials (XL) had a small therapeutic index. This indicates that the effect of the anion varies with the carrier. This is borne out by the observation that of the nine acetates in Tables VI to VIII, only four were active; six of the seven chlorides, eight of the nine halides, and four of the six benzoates were active.

In Table VII the results for a series of open-chain dimercurials, in which the alkoxy groups attached to the two and three carbons were varied, are presented. The variants were hydroxy, methoxy, ethoxy, n-propoxy, isopropoxy, and n-butoxy. No improvement in the activity resulted from varying this substituent. Eight of the twelve compounds were active.

The result of increasing the chain length as well as branching of the chain is shown in Table VIII. The one compound with more than four carbons in the skeletal chain (XXIX) and the compound with a 3 -oxaheptane carrier (XLIV) were inactive. Increased branching of the chain appeared to reduce activity. Three of the six compounds with an additional methyl substituent
cyclohexene-1 ($3 \cdot 21 \mathrm{~g}, 30 \mathrm{mmoles}$) in methanol (50 ml) was added dropwise to a stirred suspension of mercuric acetate ($20 \mathrm{~g}, 62 \mathrm{mmoles}$) in methanol (200 ml). The solution was stirred until an aliquot no longer gave a yellow precipitate with aqueous sodium hydroxide solution. To the solution was added dropwise a solution of potassium chloride ($9.24 \mathrm{~g}, 0.12 \mathrm{~mole}$) in water $(150 \mathrm{ml})$. The white precipitate, $18 \cdot 5 \mathrm{~g}$ (86 per cent), was washed thoroughly with cold water. It could not be crystallized from any common solvent. The product had m.p. $140-155^{\circ}$ and $\lambda_{\max (\mu)}^{\text {Nujol }}$ $9 \cdot 25$ (C—O—C).

Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{Hg}_{2} \mathrm{O}_{2}: \mathrm{C}, 18 \cdot 6 ; \mathrm{H}, 2 \cdot 80$. Found: C, $18 \cdot 8 ; \mathrm{H}, 2 \cdot 64$.

The ether groups were varied in Procedure J by use of the appropriate alcohol in place of methanol.

Biological Activity
 Methods

The mercurials were tested against Sarcoma 180 in Swiss mice, Leukemia L-1210 and Adenocarcinoma 755 in (C57Bl $\times \mathrm{DBA}$) Fl mice. All tests were done according to the procedures established by the Cancer Chemotherapy National Service Center, National Institutes of Health. ${ }^{17}$ Since none of the compounds had any significant activity against the first two tumours, detailed methods and results will be given only for the Adenocarcinoma.

A series, generally of 293 mice, was implanted in the axillary region with 0.1 ml of a tumour brei suspended in Locke's solution. The mice in any series were all of one sex, and all weighed between 18 and 22 g . The mice were distributed randomly in groups of ten, except for one group of 43 animals which served as a control. Treatment was begun 24 h after tumour implantation and continued once daily for eleven days. Drugs were dissolved or suspended in 0.9 per cent sodium chloride containing 0.5 per cent methylcellulose. Animals were weighed at the end of one week. Twenty-four hours after the last treatment, the mice were weighed and sacrificed, then the tumours excised, weighed and averaged.

Compounds were considered sufficiently active to warrant confirmatory tests if, on initial testing, the average tumour
weight, treated/controls, was $\leqslant 0 \cdot 50$. Without dwelling on the complexity of the statistics of the confirmatory tests, in general the compound was tested at an active dose in six independent tests. ${ }^{17}$ In some tests, after a compound was found to have significant and reproducible activity in three successive tests at a single dose, it was retested at several doses greater and less than the active dose. As will be obvious from the data presented in the following section, the majority of the compounds in the present series were active. In the course of collecting initial and confirmatory evidence of activity of these compounds, a rather unwieldy amount of new data was accumulated. In an attempt to simplify the presentation, data on each compound at each dosage level were averaged; even though this is probably not the most elegant treatment from the statistical viewpoint, it allows a reasonable interpretation of the data without burdening the reader with hundreds of tests.

For purpose of comparative evaluation of the compounds, a compound will arbitrarily be considered active if tumour weight T / C is $\leqslant 0.50$, and non-toxic if 70 per cent or more of the mice survived treatment. It is appreciated that loss of body weight is a sign of toxicity and that the tumour growth may be inhibited by attrition (see discussion).

Results and Discussion

None of the monomercurials (Table X) were active against carcinoma 755.

There were 28 open-chain dimercurials tested against carcinoma 755 (Tables VI, VII, VIII). Eighteen of these inhibited the tumours $\geqslant 50$ per cent at dosages tolerated by the mice, reducing tumour size from 9-46 per cent of controls. The maximum reductions in tumour size were observed in small, unconfirmed samples (V, XV, XVIII), or at doses barely tolerated (XV). The therapeutic indices ranged from 1 to 4 ; all but three compounds (XV, XVI and XXV) had a therapeutic index of less than 2. With the possible exception of (XVI) it is not likely that any of the openchain compounds are a significant improvement on the parent compound (I).

Table VI shows the results with compounds differing from (I) only in the anion. All but the thiocyanate were active, and even

Table VI. Effect of class 1 mercurials on Adenocarcinoma 755

Com. pound no.	$\begin{gathered} \text { NSC } \\ \text { no. } \end{gathered}$	$\mathrm{R}^{\boldsymbol{a}}$	Daily dose, $\mathrm{mg} / \mathrm{kg}$	Survi. vors	Weight change, treated/ control	Tumour weight, treated/ control	T / C
I	2201	AcO	50	0/30			toxic
			$37 \cdot 5$	3/20			toxic
			32	23/30	-0.6/1.9	631/1222	$0 \cdot 52$
			25	251/350	$-0 \cdot 2 / 2 \cdot 3$	544/1075	$0 \cdot 32$
			20	47/60	$-0.5 / 1.9$	753/1533	$0 \cdot 49$
			16	88/100	$0 \cdot 6 / 1 \cdot 7$	718/1068	$0 \cdot 67$
			10	16/20	$0 \cdot 7 / 1 \cdot 4$	606/1165	$0 \cdot 52$
			8	49/50	1-0/1.3	885/1112	$0 \cdot 80$
			4	50/50	0.4/1.3	807/1135	0.71
			2	37/40	1-4/1.3	1231/1153	$1 \cdot 07$
			1	20/20	0.5/0.5	940/948	$0 \cdot 99$
XI	20829	Cl	75	0/10			toxic
			50	23/50	1-1/2.9	337/1853	toxic
			25	8/10	0.4/1.5	401/1267	$0 \cdot 32$
			22	10/10	-1.1/2.9	516/2155	$0 \cdot 24$
			15	10/10	$3 \cdot 5 / 3 \cdot 5$	1187/1336	0.89
XII	20831	Br	100	1/10			toxic
			75	29/40	$-1 \cdot 2 / 1 \cdot 5$	407/1737	$0 \cdot 23$
			50	18/20	$1 \cdot 7 / 3 \cdot 2$	941/1761	$0 \cdot 53$
			33	8/10	1-2/2.9	988/2155	$0 \cdot 46$
			20	10/10	0.6/0.2	801/938	$0 \cdot 85$
XIII	20830	I	150	5/10	0.6/2.0	502/1638	toxic
			100	33/60	$-1 \cdot 5 / 1 \cdot 6$	472/1714	toxic
			67	9/10	$0 \cdot 5 / 2 \cdot 0$	730/1638	0.45
			50	10/10	$2 \cdot 7 / 3 \cdot 5$	1111/1336	$0 \cdot 83$
XIV	22681	BzO	50	1/20			toxic
			25	45/50	0.3/2.4	587/1486	$0 \cdot 40$
			$12 \cdot 5$	18/20	1-7/2.4	573/1418	$0 \cdot 40$
			$6 \cdot 25$	20/20	2.4/2.4	1005/1418	$0 \cdot 71$
XV	22682	SrO	113	6/10	$-1 \cdot 4 / 1 \cdot 6$	302/1682	toxic
			75	35/41	$-1 \cdot 7 / 2 \cdot 2$	171/1457	$0 \cdot 12$
			50	47/51	$-1.8 / 1.8$	438/1528	$0 \cdot 29$
			33	21/21	$-0 \cdot 7 / 1 \cdot 3$	466/1522	$0 \cdot 31$
			16	30/30	$0 \cdot 7 / 2 \cdot 3$	928/1700	$0 \cdot 54$
			8	30/30	1.0/2.3	1022/1700	$0 \cdot 60$

Table VI-continued

Com. pound no.	$\begin{aligned} & \text { NsC } \\ & \text { no. } \end{aligned}$	R^{a}	Daily dose $\mathrm{mg} / \mathrm{kg}$	Survi. vors	Weight change, treated/ control	Tumour weight, treated/ control	T / O
XVI	23110	OcO	100	0/10			toxic
			75	3/10			toxic
			50	43/50	$-0.7 / 1 \cdot 7$	438/1462	0.30
			25	16/20	$-1 \cdot 2 / 0 \cdot 65$	429/1613	$0 \cdot 27$
			$12 \cdot 5$	19/20	0.7/0.7	747/1613	$0 \cdot 46$
			$6 \cdot 3$	10/10	1.8/1.2	997/1062	$0 \cdot 94$
			$3 \cdot 1$	$9 / 10$	1-5/1.2	793/1062	$0 \cdot 75$
XVII	30911	-SCN	100	0/10			toxic
			75	0/10			toxic
			50	49/90	$-0.6 / 2 \cdot 3$	660/1861	toxic
			$37 \cdot 5$	43/60	$-0.9 / 1.8$	805/1546	$0 \cdot 52$
			25	$9 / 10$	$-0.9 / 0 \cdot 6$	1058/1101	0.96

$a \mathrm{AcO}=$ acetoxy, $\mathrm{BzO}=$ benzoyloxy, $\mathrm{SrO}=$ stearoyloxy, $\mathrm{O} 0 \mathrm{O}=n \cdot 0$ ectanoyloxy.
the latter exhibited some tumour-reducing activity though not enough to qualify as significantly active. The octanoate and stearate were the most effective of the salts of (I). It is interesting that the octanoate of the more effective dioxan dimercurials (XL) had a small therapeutic index. This indicates that the effect of the anion varies with the carrier. This is borne out by the observation that of the nine acetates in Tables VI to VIII, only four were active; six of the seven chlorides, eight of the nine halides, and four of the six benzoates were active.

In Table VII the results for a series of open-chain dimercurials, in which the alkoxy groups attached to the two and three carbons were varied, are presented. The variants were hydroxy, methoxy, ethoxy, n-propoxy, isopropoxy, and n-butoxy. No improvement in the activity resulted from varying this substituent. Eight of the twelve compounds were active.

The result of increasing the chain length as well as branching of the chain is shown in Table VIII. The one compound with more than four carbons in the skeletal chain (XXIX) and the compound with a 3 -oxaheptane carrier (XLIV) were inactive. Increased branching of the chain appeared to reduce activity. Three of the six compounds with an additional methyl substituent

Table VII. Effect of class 2 mercurials on Adenocarcinoma 75.)
$\mathrm{R}^{\prime} \mathrm{HgCH}_{2} \mathrm{CH}(\mathrm{OR})-\mathrm{CH}(\mathrm{OR})-\mathrm{CH}_{2} \mathrm{HgR}^{\prime}$

Com. pound no.	$\begin{aligned} & \text { NCS } \\ & \text { no. } \end{aligned}$	$\mathrm{R}^{\prime \prime}$	R	Daily close, $\mathrm{mg} / \mathrm{kg}$	Survi- vors	Weight change, treated/ control	Tumour weight, treated/ control	T / C
II	21296	AcO	Me^{b}	20	6/10	$-1 \cdot 1 / 3 \cdot 5$	707/1336	toxic
				9	10/10	-1.0/-0.5	680/948	0.72
III	19952	AcO	$E t^{\text {c }}$	100	0/10			toxic
				30	20/30	$-1 \cdot 7 / 2 \cdot 0$	269/1681	toxic
				25	29/30	$0 \cdot 3 / 2 \cdot 0$	616/1700	$0 \cdot 36$
				20	9/10	-0.3/0.2	799/938	$0 \cdot 85$
IV	23605	AcO	$E t^{\text {b }}$	25	3/20	$-2 \cdot 3 / 2 \cdot 1$	563/1359	toxic
				$12 \cdot 5$	0/10			toxic
				$6 \cdot 25$	8/10	$0 \cdot 5 / 3 \cdot 9$	1743/2395	0.73
V	21289	AcO	H^{c}	30	2/10	-2.0/1.3	318/1355	toxic
				$22 \cdot 5$	4/10	0.0/0.2	378/938	toxic
				20	19/20	$0 \cdot 0 / 2 \cdot 4$	737/1346	$0 \cdot 55$
				13	8/10	$-2 \cdot 4 / 1 \cdot 3$	159/1355	$0 \cdot 12$
				10	20/20	0.3/1.9	690/1439	$0 \cdot 48$
				9	9/10	$-1 \cdot 7 / 1 \cdot 3$	119/1355	$0 \cdot 09$
				6	10/10	$0 \cdot 1 / 1 \cdot 6$	446/1316	$0 \cdot 34$
				4	10/10	1-3/1.6	836/1316	$0 \cdot 64$
				$2 \cdot 6$	9/10	$1 \cdot 5 / 1 \cdot 6$	936/1316	0.71
VII	30912	AcO	$n \cdot \mathrm{Pr}^{c}$	50	$0 / 10$			toxic
				25	1/10			toxic
				$18 \cdot 7$	1/10			toxic
				$12 \cdot 5$	57/60	-0.4/2.2	851/2394	$0 \cdot 36$
				8	10/10	$2 \cdot 3 / 3 \cdot 2$	655/2719	$0 \cdot 24$
				$5 \cdot 5$	10/10	3-6/3•2	1730/2719	$0 \cdot 64$
VIII	30914	AcO	$n \cdot \mathrm{Bu}^{\text {c }}$	35	$0 / 10$			toxic
				$17 \cdot 5$	6/40	$-1 \cdot 7 / 3 \cdot 0$	1463/3014	toxic
				13	38/40	0.7/2.5	1354/2219	$0 \cdot 61$
				9	33/40	$0 \cdot 0 / 1 \cdot 3$	892/1544	$0 \cdot 58$
IX	22680	Cl	$i \cdot \mathrm{Pr}$	50	0/10			toxic
				25	30/40	-1/1/2.6	450/1592	$0 \cdot 28$
				$12 \cdot 5$	19/20	1.4/3.5	1028/1020	$1 \cdot 01$
				$6 \cdot 25$	10/10	3/3/3.6	847/1774	$0 \cdot 48$
				3	10/10	1-4/1-3	1090/1496	$0 \cdot 73$
XVIII	30910	Cl	$n \cdot \operatorname{Pr}^{c}$	50	4/10	$-0.6 / 2 \cdot 1$	265/1313	toxic
				25	$6 / 10$	$-1 \cdot 3 / 2 \cdot 1$	70/1313	toxic
				$18 \cdot 7$	$9 / 10$	-0.4/3.2	538/2719	$0 \cdot 20$
				$12 \cdot 5$	53/60	1-9/2.2	995/2393	$0 \cdot 42$
				$8 \cdot 0$	10/10	2-9/3•2	1429/2719	$0 \cdot 53$
				$5 \cdot 5$	10/10	$2 \cdot 0 / 3 \cdot 2$	1670/2719	$0 \cdot 61$

Table VII—continued

Com. pound no.	$\begin{gathered} \text { NCS } \\ \text { no. } \end{gathered}$	$\mathrm{R}^{\prime \prime}$	R	Daily dose, $\mathrm{mg} / \mathrm{kg}$	Survi. vors	Weight change, treated/ control	Tumour weight, treated/ control	T / C
XIX	30913	Cl	$n \cdot \mathrm{Bu}^{\text {c }}$	50	0/10			toxic
				25	4/10	$-2 \cdot 6 / 0 \cdot 1$	484/2163	toxic
				$18 \cdot 7$	0/10			toxic
				$12 \cdot 5$	17/20	$-1 \cdot 2 / 1 \cdot 8$	574/1462	$0 \cdot 39$
				8	19/20	$-0.5 / 1 \cdot 4$	1079/1620	$0 \cdot 67$
				$5 \cdot 5$	10/10	1-9/2.0	1503/1638	$0 \cdot 92$
XX	30918	BzO	$n \cdot \mathrm{Pr}^{\text {c }}$	50	0/10			toxic
				25	0/10			toxic
				$12 \cdot 5$	10/10	$-0 \cdot 2 / 1 \cdot 6$	1401/1283	1.09
XXI	30919	BzO	$n \cdot \mathrm{Bu}^{\text {e }}$	100	0/10			toxic
				50	2/10		$65 / 1618$	toxic
				$37 \cdot 5$	9/10	$-1 \cdot 5 / 2 \cdot 0$	622/1638	$0 \cdot 38$
				25	61/70	-0.6/2.1	538/2204	$0 \cdot 24$
				$12 \cdot 5$	30/30	0.6/2.0	926/1700	$0 \cdot 54$
				$6 \cdot 25$	10/10	0.2/2.8	1260/1681	$0 \cdot 75$
XXII	29442	BzO	H°	50	0/10			toxic
				25	4/10	$-3 \cdot 1 / 0 \cdot 3$	163/1618	toxic
				$18 \cdot 7$	$3 / 10$	$0 \cdot 2 / 2 \cdot 0$	655/1638	toxic
				12.5	49/60	0.9/2.1	1042/2285	$0 \cdot 46$
				8	$6 / 10$	1-8/2.0	$563 / 1638$	toxic
				$5 \cdot 5$	10/10	1-6/2.0	899/1638	$0 \cdot 55$

${ }^{a} \mathrm{AcO}=$ acetoxy, $\mathrm{BzO}=$ benzoyloxy. $\quad{ }^{b}(\pm)$-Isomer. ${ }^{\text {a meso-Isomer. }}$.
on the C-2 carbon were inactive. There were 20 ring compounds (Table IX) and, in contrast to open-chain compounds, all but two of these were active. Therapeutic indices were as high as $7 \cdot 5$ to 8 (XXXVII, XXXVIII, and XLIII). At best, the compounds in Table VI reduced the size of the tumour to $16-43$ per cent of the controls; in this respect the ring compounds were no more effective antitumour agents than the open-chain compounds. The variations on the basic structure in this group of compounds were: the position of the substituents in the ring, one of the hetero atoms in the ring, and the anion. Of the three most effective compounds in the series, two were 2,5 -substituted dioxans (XXXVII, XXXVIII), and one was a 2,3 -substituted dioxan (XLIII). The anion causes considerable difference in activity of the dioxans, but the anion effect again varies with the structure;
'Table VIII. Effect of class 3 mercurials on Adenocarcinoma 755

Compound no.	$\begin{aligned} & \text { NSC } \\ & \text { no. } \end{aligned}$	$\mathrm{R}^{\prime a}$	$\mathrm{R}^{\prime \prime}$	R	X	Daily dose, $\mathrm{mg} / \mathrm{kg}$	Survivors	Weight change, treated/ control	Tumour weight, treated/ control	T / C
XXIII	21298	AcO	Me	Et	--	25	0/10			toxic
						15	9/10	1-3/3.5	1343/1336	1-01
						8	$9 / 10$	$-0.8 /-0.5$	648/948	$0 \cdot 68$
						$6 \cdot 25$	$9 / 10$	0-7/2.8	1049/1681	0.62
XXIV	21292	Cl	Me	Et	--	50	3/10	$-3 \cdot 6 / 0 \cdot 3$	217/1618	toxic
						25	10/10	$-0 \cdot 1 / 2 \cdot 7$	974/1166	$0 \cdot 84$
						15	10/10	4-1/3 5	1349/1336	$1 \cdot 01$
XXV	20832	Cl	Me	Me	-	40	2/10	$-2 \cdot 1 / 0 \cdot 2$	$855 / 938$	toxic
						30	7/10	-1.4/1.6	186/1188	$0 \cdot 16$
						20	28/30	$-0 \cdot 3 / 1 \cdot 9$	620/1370	$0 \cdot 45$
						13	30/30	$-0 \cdot 1 / 1 \cdot 6$	705/1536	0.46
						9	10/10	2.4/1.6	1636/1188	1.38
XXVI	30917	BzO	Me	Me	-	100	5/10	$-3 \cdot 0 / 2 \cdot 1$	83/1313	toxic
						50	$9 / 10$	1-1/2.1	751/1313	0.57
XXVII	23103	Cl	Me	H	--	25	12/30	$-1 \cdot 3 / 2 \cdot 1$	328/1394	toxic
						$12 \cdot 5$	43/60	0.3/2.9	656/2426	$0 \cdot 27$
						$9 \cdot 4$	38/50	0.8/2.2	708/1541	$0 \cdot 46$
XXVIII	31961	BzO	Me	H	-	25	1/10			toxic
						$12 \cdot 5$	10/20	0.9/2.2	402/1482	toxic
						8	47/70	$-1 \cdot 3 / 1 \cdot 0$	448/1159	toxic
						6	35/40	-0.9/0.9	333/1009	$0 \cdot 33$
						4	29/30	1-3/2.1	1236/1699	$0 \cdot 73$
						$2 \cdot 4$	10/10	0.8/0.8	940/1152	0.82
XXIX	21297	AcO	H	Me	$-\mathrm{CH}_{2} \mathrm{CH}_{2}-$	30	0/10			toxic
						20	10/10	1-2/3.5	874/1336	0.65
XLIV	22690	I	H	Me	$-\mathrm{CH}_{2} \mathrm{OCH}_{2}$	25	$7 / 10$	$-0 \cdot 7 / 2 \cdot 1$	899/1518	$0 \cdot 59$

$\boldsymbol{a}_{\mathrm{AcO}} \mathbf{A c}$ actoxy, $\mathrm{BzO}=$ benzoyloxy.
'Table IX. Effect of class 4 mercurikils on Adenocarcinoma 755

Table IX—continued

Compound no.	$\begin{aligned} & \text { NSC } \\ & \text { no. } \end{aligned}$	Isomer	$\mathrm{R}^{\boldsymbol{a}}$	X	Daily dose, $\mathrm{mg} / \mathrm{kg}$	Survivors	Weight change, treated/ control	${ }^{\text {Thumour }}$ weight, treated/ control	T / C
XXXIX	38187	2,5	Cl	0	250	2/10	$-2 \cdot 8 /-0 \cdot 6$	45/688	toxic
					100	45/50	$-0 \cdot 6 / 1 \cdot 3$	696/1596	0.44
					50	30/30	$-0 \cdot 1 / 2 \cdot 0$	858/1700	0.51
					25	30/30	$-0 \cdot 2 / 2 \cdot 0$	690/1700	$0 \cdot 40$
					$12 \cdot 5$	10/10	$4 \cdot 3 / 2 \cdot 8$	1207/1681	$0 \cdot 72$
XL	38186	2,5	OcO	0	100	0/10			toxic
					50	4/20	$1 \cdot 4 / 3 \cdot 5$	1141/1794	toxic
					25	74/90	1-0/2-5	490/1559	0.31
					$12 \cdot 5$	20/20	0.9/2-4	1125/1624	$0 \cdot 69$
					$6 \cdot 15$	19/20	1-6/2-4	1024/1624	$0 \cdot 63$
					$3 \cdot 1$	10/10	0.7/2.4	1540/1624	0.92
XLI.	21935	2,3	NO_{3}	0	25	20/30	$-1 \cdot 0 / 1 \cdot 1$	$536 / 1213$	toxic
					18	9/10	$-1 \cdot 0 / 1 \cdot 6$	159/1188	$0 \cdot 13$
					12	29/30	1.9/2 2	623/1336	$0 \cdot 47$
					8	10/10	0.0/1.6	336/1188	$0 \cdot 28$
					5	10/10	1-5/1-6	709/1188	$0 \cdot 60$
XLII	21934	2,3	I	0	200	$8 / 20$	$-1 \cdot 9 / 1 \cdot 2$	375/1661	toxic
					150	6/10	$-1 \cdot 5 / 1 \cdot 6$	231/1188	toxic
					100	57/60	$-0 \cdot 9 / 1 \cdot 6$	379/1346	$0 \cdot 28$
					66	10/10	0-7/1.6	360/1188	$0 \cdot 30$
					44	$9 / 10$	$0 \cdot 1 / 1 \cdot 6$	289/1188	$0 \cdot 24$
					40	9/10	3.2/3.5	1221/1336	$0 \cdot 91$
					25	10/10	$-0 \cdot 1 /-0 \cdot 5$	531/946	$0 \cdot 56$

XLIII	29443	2,3	BzO	0	50	4/10	$-0 \cdot 4 / 2 \cdot 7$	144/1166	toxic
					$37 \cdot 5$	13/20	$-1 \cdot 3 / 2 \cdot 3$	198/1786	toxic
					25	72/80	$0 \cdot 3 / 2 \cdot 0$	519/1795	$0 \cdot 29$
					17	10/10	$1 \cdot 9 / 2 \cdot 9$	683/2155	$0 \cdot 32$
					$12 \cdot 5$	19/20	-1.2/2.0	337/1499	$0 \cdot 22$
					11	10/10	2-5/2-9	898/2155	$0 \cdot 42$
					$6 \cdot 25$	40/40	$0 \cdot 2 / 1 \cdot 9$	708/1654	$0 \cdot 48$
					$3 \cdot 12$	30/30	$1 \cdot 0 / 2 \cdot 0$	680/1704	$0 \cdot 40$
					$1 \cdot 0$	10/10	$2 \cdot 2 / 2 \cdot 8$	1500/1681	$0 \cdot 95$
XLV	23109^{e}				50	0/10			toxic
					25	0/10			toxic
					$12 \cdot 5$	13/30	$-0 \cdot 8 / 1 \cdot 8$	463/1593	toxic
					$6 \cdot 0$	20/30	$0 \cdot 0 / 1 \cdot 9$	1050/1705	toxic
					$3 \cdot 0$	20/20	$2 \cdot 3 / 1 \cdot 6$	1579/1710	$0 \cdot 92$
LIII	40581	2,5	Nc	0	250	0/10			toxic
					100	2/10	$-0.2 / 1 \cdot 9$	383/1162	toxic
					50	39/40	0-7/3-9	1005/1737	0.58
LIV	41442	2,5	TlO	0	200	0/10			toxic
					100	0/10			toxic
					50	57/70	$-0 \cdot 1 / 2 \cdot 2$	670/1661	$0 \cdot 40$
					25	30/30	0-3/2.0	584/1700	0-34
					$12 \cdot 5$	30/30	0-8/2.0	1044/1700	$0 \cdot 61$
LV	41443	2,5	Np	0	100	$0 / 10$			toxic
					50	$1 / 10$	$-1 \cdot 9 / 2 \cdot 6$		toxic
					25	8/10	$0 \cdot 8 / 0 \cdot 9$	$421 / 702$	$0 \cdot 60$

[^3]for example, the dinicotinate (NSC-40581) was inactive while the dibenzoate (NSC-30916) of the same mercuri carrier had a chemotherapeutic index of $7 \cdot 5$. The best results with the 2,6 -dioxan carrier was given by the chloride; among 2,5 -dioxans, the iodide and benzoate were best, while among 2,3-dioxans the benzoate was the best.

Substitution of an oxygen by N or S , or the elimination of both oxygens in the ring (XLV), did not improve activity.

It would be unfair to the massive amounts of data accumulated and to the concept of rational synthesis not to mention what averages conceal. It was characteristic of the mercurials, but probably not peculiar to them, that there was much variation in results obtained with any one compound in separate tests. Both toxicity and antitumour activity varied markedly from test to test in an entirely unpredictable fashion. These fluctuations did not seem to be associated with the tumour line used or with the rate of growth of the tumours in the test. The mercurials are insoluble in water and the density of the particles, after suspension, is quite high. It is conceivable that the seemingly random fluctuation in activity might be associated with small changes in the size of the particles in the suspension, as prepared in different experiments. Such differences in particle size could result from variation in the tightness of fit of the homogenizer. The explanation is hypothetical, but the variability is real. One statistical implication of the variability is that none of the bismercurials can be dismissed as inactive on the basis of a single experiment. Furthermore, the estimation of a therapeutic index is reliable only if based on a large number of independent tests. Nevertheless, the increased therapeutic effectiveness of the dioxan (XXXVIII) over the parent compound (I) can be demonstrated in concurrent tests run in the same experiment.

Another point that needs to be discussed is the relationship between toxicity and activity. Frequently, toxicity may be reflected in loss of appetite and, if sufficiently severe, the lowered food intake may inhibit tumour growth.

That activity of the mercurials is not due to weight loss can be readily seen by the following break-down of those data in Tables VI to X in which 70 per cent or more of the mice survived in a given test.

Table X. 'The effect of monomercurials class 5 compounds on Adenocarcinoma 755

Compound no.	$\begin{gathered} \text { NSC } \\ \text { no. } \end{gathered}$	Formula	Daily dose, $\mathrm{mg} / \mathrm{kg}$	Survivors	Weight change, treated/ control	Tumour weight, treated/ control	T / C
XLVI	23602		$\begin{array}{r} 25 \\ 12 \cdot 5 \\ 6 \cdot 25 \\ 3 \cdot 0 \end{array}$	$\begin{aligned} & 0 / 10 \\ & 6 / 10 \\ & 5 / 10 \\ & 9 / 10 \end{aligned}$	$\begin{array}{r} -0 \cdot 3 / 3 \cdot 9 \\ 0 \cdot 5 / 3 \cdot 1 \\ 0 \cdot 6 / 1 \cdot 5 \end{array}$	$\begin{aligned} & 1167 / 2395 \\ & 1547 / 2010 \\ & 1067 / 1360 \end{aligned}$	toxic toxic toxic 0. 78
XLVII	23107		$\begin{array}{r} 100 \\ 50 \\ 25 \end{array}$	$\begin{aligned} & 0 / 10 \\ & 0 / 10 \\ & 8 / 10 \end{aligned}$	$0 \cdot 0 / 2 \cdot 1$	1042/1359	toxic toxic $0 \cdot 77$
XLVIII	23102		$\begin{array}{r} 25 \\ 12 \cdot 5 \\ 6 \cdot 25 \\ 3 \cdot 0 \\ 1 \cdot 5 \end{array}$	$\begin{array}{r} 0 / 10 \\ 0 / 10 \\ 1 / 10 \\ 4 / 10 \\ 10 / 10 \end{array}$	$\begin{array}{r} 0 \cdot 4 / 0 \cdot 7 \\ 1 \cdot 3 / 3 \cdot 2 \\ -0 \cdot 7 / 1 \cdot 2 \end{array}$	$\begin{array}{r} 1950 / 2048 \\ 950 / 1776 \\ 1777 / 1938 \end{array}$	toxic toxic toxic toxic 0.92
XLIV	23603		$\begin{array}{r} 25 \\ 12 \cdot 5 \\ 6 \cdot 25 \\ 3 \cdot 0 \end{array}$	$\begin{array}{r} 0 / 10 \\ 0 / 10 \\ 2 / 10 \\ 10 / 10 \end{array}$	$\begin{aligned} & 0 \cdot 3 / 3 \cdot 1 \\ & 1 \cdot 4 / 1 \cdot 5 \end{aligned}$	$\begin{aligned} & 1528 / 2010 \\ & 1811 / 1360 \end{aligned}$	toxic toxic toxic $1 \cdot 33$
L	23604		$\begin{array}{r} 25 \\ 12 \cdot 5 \\ 6 \cdot 25 \\ 3 \cdot 0 \end{array}$	$\begin{array}{r} 0 / 10 \\ 0 / 10 \\ 4 / 10 \\ 10 / 10 \end{array}$	$\begin{array}{r} -2 \cdot 9 / 3 \cdot 1 \\ 0 \cdot 3 / 1 \cdot 5 \end{array}$	$\begin{array}{r} 481 / 2010 \\ 1393 / 1360 \end{array}$	toxic toxic toxic $1 \cdot 02$
L1	23601		$\begin{array}{r} 50 \\ 25 \\ 12 \cdot 5 \end{array}$	$\begin{aligned} & 0 / 20 \\ & 0 / 10 \\ & 7 / 10 \end{aligned}$	$0 \cdot 1 / 3 \cdot 9$	1422/2395	toxic toxic $0 \cdot 59$
L1I	23104		$\begin{array}{r} 25 \\ 12 \cdot 5 \\ 6 \cdot 25 \end{array}$	$\begin{aligned} & 0 / 10 \\ & 0 / 10 \\ & 7 / 10 \end{aligned}$	$1 \cdot 5 / 3 \cdot 9$	1642/2395	toxic toxic $0 \cdot 69$

[^0]: * This programme was carried out under the auspices of the Cancer Chemo. therapy National Service Center, National Cancer Institute, National Institutes of Health, Public Health Service, Contracts No. SA-43-ph-1892 and No. SA-43$\mathrm{ph} \cdot 1909$. The opinions expressed in this paper are those of the authors and are not necessarily those of the Cancer Chemotherapy National Service Center. For the preceding paper in this series, cf. W. W. Lee, A. Benitez, L. Goodman and B. R. Baker, J. Amer. chem. Soc., 82, 2648 (1960).
 \dagger The NSC accession numbers used in this paper were assigned by the CCNSC.
 \ddagger A sample of this compound, ${ }^{1,2}$ prepared by B. R. Baker in 1940, was obtained from Professor Roger Adams of the University of Illinois. The Chemical Abstracts name for this compound is meso(2,3-dimethoxytetramethylene)bis[mercury acetate].

[^1]: ${ }^{\boldsymbol{a}} \mathrm{AcO}=$ acetoxy, $\mathrm{BzO}=$ benzoyloxy, $\mathrm{OcO}=n$-octanoyloxy, $\mathrm{NpO}=\beta$-naphthoyloxy, $\mathrm{TlO}=\boldsymbol{p}$-toluyloxy, $\mathrm{NcO}=$ nicotinoyloxy. ${ }^{b}$ Yicld of purificd product. - Mixture of stereoisomers. dRecrystallized from 95% ethanol. e Lit. ${ }^{4}$, m.p. 116°. Probably pure stereoisomer of trans configuration ${ }_{g}$ Recrystallized from cthyl acetate. ${ }^{i}$ Recrystallized from methanol. i Recrystallized from 2 -methoxyethanol-water. iPrepared from diallylamine g Recrystallized from cthyl acetate. ${ }^{2}$ Rccrystalized from methanol. i Recrystalized from 2 -methoxyethanol-water. Prepared from dially iamine
 m Not recrystallized because of resultant dissociation of nitrate group; see compound (XXXVI). n One $\mathrm{R}=\mathrm{OH}$ and the other $\mathrm{R}=\mathrm{NO}_{3}$. ${ }^{\circ}{ }^{\circ} \mathrm{Recrystallized}$
 from water. p Recrystallized from dimethylformannide. q By treatment of an aqueous solution of the proper nitratomercury derivative with an aqueous
 2 -ethoxyethanol. w Not recrystallized.

[^2]: * Melting points were taken on the Fisher-Johns apparatus and are un. corrected.

[^3]: $a \mathrm{BzO}=$ benzoyloxy $; \mathrm{AcO}=$ acetoxy $; \mathrm{OcO}=n$-octanoyloxy $; \mathrm{TlO}=p$-toluyloxy $; \mathrm{Nc}=$ nicotinate; $\mathrm{N} p=\beta \cdot n a p h t h o a t e . \quad b$ One $\mathrm{R}=\mathrm{NO} \mathrm{O}_{3}$ and the other $\mathbf{R}=\mathbf{O H}$: © See introduction of Chemistry for structure.

